

Everything you need to know for your brand SESSION 2

MASTERCLASS RECYCLING

a deep dive into recycling of household packaging

Everything you need to know for your brand

The PROGRAMM

& etiquette of meetings

The programm

Five sessions into recycling of household packaging

09-02-2021

10.00 - 11.15 CET

Design & Certification

All participants will receive PDF with Design for recycling Guidelines

- Design for Recycling Guidelines;
- Training: How to make a self-assessment
 of recyclability for your packaging
- Mindeststandard in Germany, RecycleCheck in NL
- Certification conform RecyClass

16-02-2021

10.00 – 11.00 CET

Producer Responsibility

- Everything you want to know on Extended Producer Responsibility (EPR-systems) throughout the world
- What is changing in EPR for packaging
- Presented by Lorax for legislation & registration, supported by SUEZ.circpack for everything on recycling

60 minutes

5

Date to be aligned with you

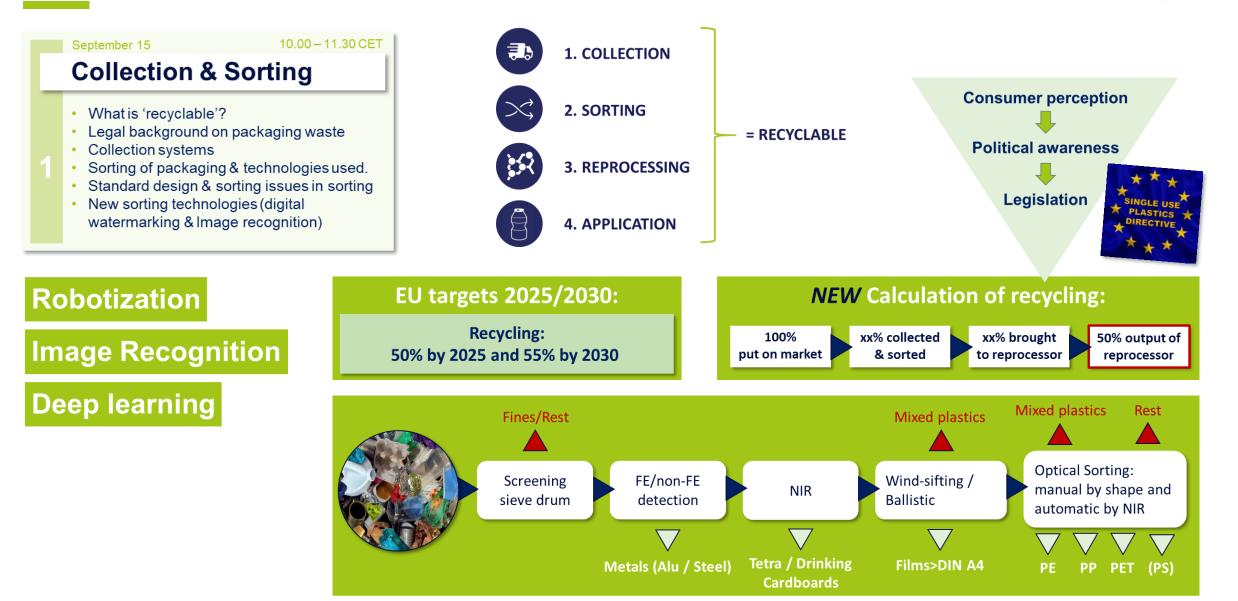
One-on-one session

- Opportunity to ask additional questions in a one-on-one live session with a SUEZ.circpack expert.
- Get answers to your dedicated questions that are really important for you and your company
- No competitors listening!

Etiquette during the meeting

- Slides will be provided after the meeting
- Question? ask via the chat
- Have your QR-scanning app ready on your mobile:

- Your competitors might be listening.
 Do not share anything that you do not want to be public
- Do not discuss prices, fees, margins, customers, etc.
- When you feel that regulatory rules are broken, please inform us via chat in order for us to take action.


Everything you need to know for your brand

Recap of Session One

Everything you need to know for your brand

REPROCESSING in EUROPE

REPROCESSING of plastics

TOTAL INSTALLED PLASTICS RECYCLING CAPACITY PER COUNTRY

- 9,4 Mt of post consumer plastics sent for recycling
- 7,5 Mt of post consumer <u>packaging</u> plastics sent for recycling
- Conclusion = Growth needed!

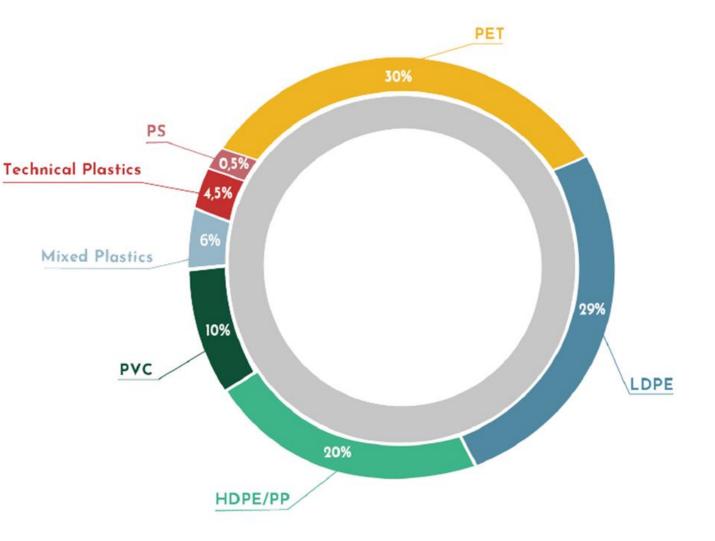
600 COMPANIES WITH 8.5 MT

total installed recycling capacity in the EU

Installed Recycling Capacity

- <50kt
- between 50kt and 250kt
- between 250kt and 0.5Mt
- between 0.5Mt and 1Mt
- between 1Mt and 1.5Mt
- >1.5Mt

REPROCESSING of plastics


SHARE OF INSTALLED RECYCLING CAPACITY PER TYPE OF POLYMER

80% = PET, LDPE, HDPE and PP

5 countries

cover 67% of the total recycling capacity in Europe:

Germany, Italy, Spain, UK and France

Everything you need to know for your brand

ADDITIONAL SORTING NEEDED

@ REPROCESOR

Additional sorting @ the Reprocessor

>80% of recycling SOTINO

Additional sorting @ the Reprocessor

How much additional sorting is required?

ORIGIN?

Post consumer:

- Source separated?
- Sorted from residual waste?
- Deposit system?

Post industrial:

 Return logistics? Deposit? Re-Use?

Post-production:

 Production scrap, mis batches, Obsolete stock

Sorting facility?

Quality of INPUT?

- Target material (PET, PE, PP,..)
- % non-target-material
- Different types of polymer?
- Metals?
- Glass?
- Residue?
- Fat?
- Other materials?
- Silicon sealant tubes?
- Colors?

Quality of OUTPUT?

- Purity of polymer?
- MFI?
- IV?
- Strenght?
- Food grade?
- Color?
- Smell?

APPLICATION?

- Quality & safety requirements
- Bottle to bottle?
- Film to film?
- Thick wall product?
- Type of moulding?
- Dark or light product?
- Smell acceptance

Everything you need to know for your brand

TECHNOLOGIES IN PLACE

Technologies in place

>80% of recycling = sorting

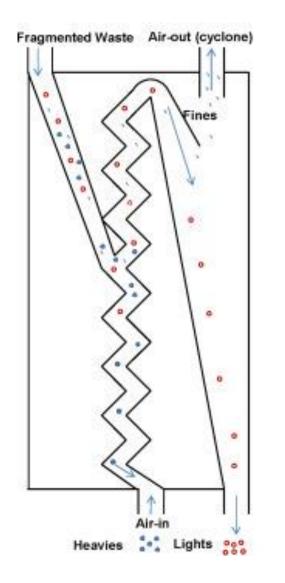
- Shredding & Washing
- Label separation
- Friction
- Sink-float
- Optical sorting of polymer (NIR)
- Optical sorting of color (CCD camera's)
- Magnetic Density Separation (liquisort)

- Elutriator (zigzag windsifter)
- Air classification (wind sifting)
- (Hydro)cyclone / Centrifuge
- Tribo electric separation
- Magnetic (FE)
- Pulping (Cardboard & Tetra)

Technologies in place

Sink-float technology:

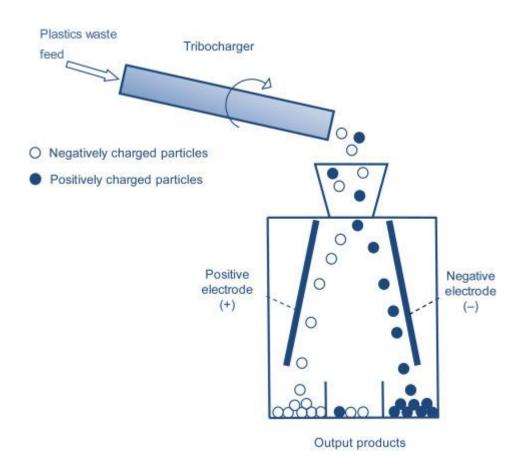
- PP, PE, foams and Silicon **float** in water
- PET, PS, PVC and most of the other plastics **sink**



Technologies in place

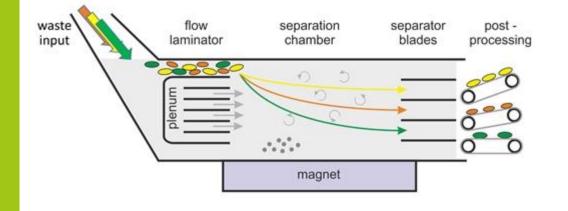
Elutriator (zigzag):

- Separating **light** from **heavy** particles
- Separating labels and sleeves from rigid packaging



Technologies in place

Tribo electric static sorting:


- Mixture of non-conductive materials
- Completely disintegrated material (no composite materials)
- Different tribo-electric charging behaviour
- Dry material (ideal surface moisture < 0.4 %)
- Dust-free material
- Particle size between 2 and 12 mm
- Ideally two-component mixtures
- PVC vs PE or PP vs PE
- ABS and PS from Electronics

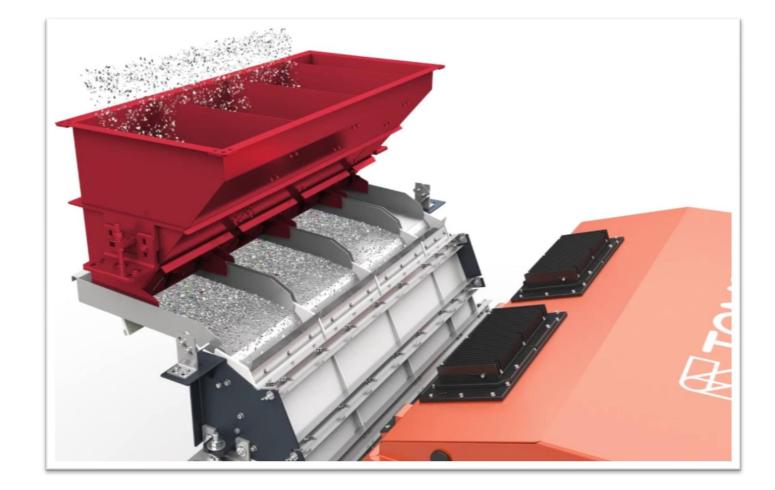
Technologies in place

Magnetic Density Separator

- MDS is a smart way of sorting polymers by density
- Downside: density can be altered by additives

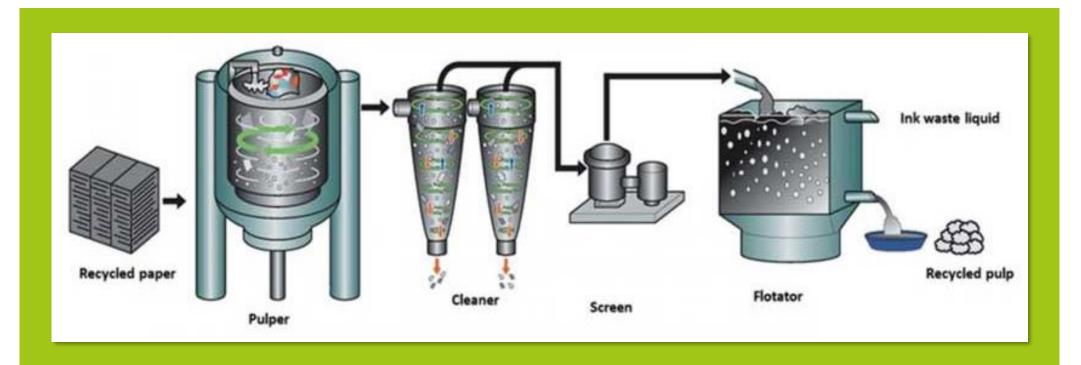
Sketch of an industrial MDS system

- Plastics are grinded into smaller pieces (flakes)
- The flakes are released in the MDS, which contains magnetic fluid
- A magnet is used to create a density gradient field. This creates a different density at different heights
- Each type of plastic has its own density and sinks or floats to a specific level
- At the end of the bath, all plastic flakes flow to different compartments.



Technologies in place

NIR & Color flake sorting:


PET flakes after sorting (accept) PET flakes (reject)

Technologies in place

Suez Ciccack* Diversite & Christican

Pulping Paper & Cardboard

- Cardboard & paper can be recycled
- What happens with laminated materials? Plastics? Alu?

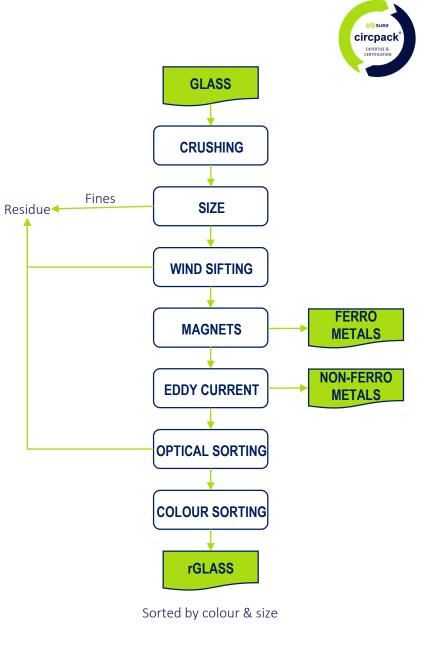
Technologies in place

Pulping Beverage Cardboards

Beverage cartons consists of:

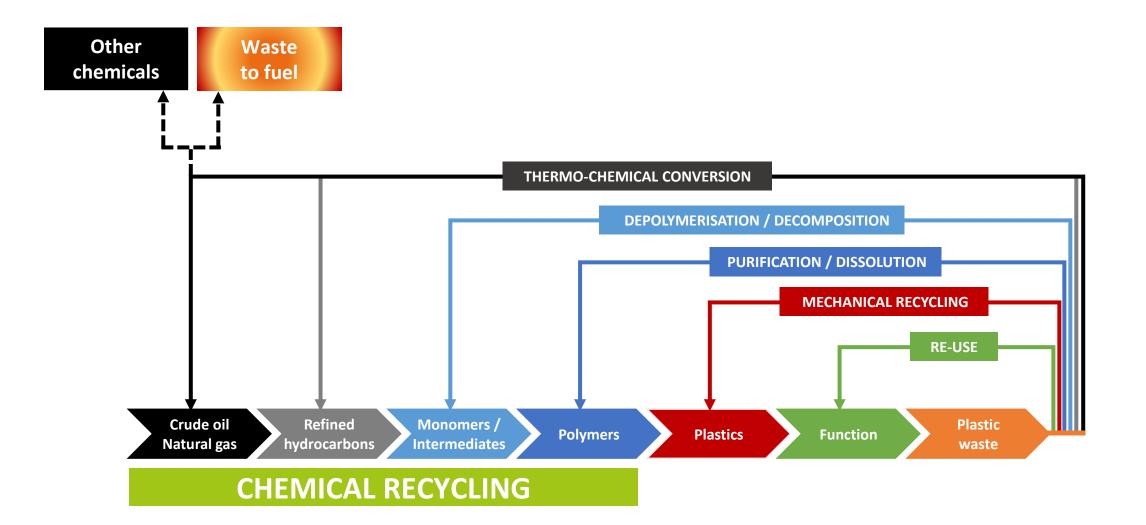
- 75% paperboard
- 21% polymers (PE)
- 4% Aluminium (oxygen barrier)

- After the sorting the beverage cartons get separated into the components by pulping in water
- Paper fibres get reused as household paper, cardboard boxes, paper bags and envelopes
- Alu and plastics mainly go to incineration or end-up as heating material into the cement industry
- new plant, which can sort out the value material are planned but not working now


Technologies in place

Glass sorting

- Different sorting technologies in place
- Magnet, wind sifting, color sorting, etc. ٠
- Plastics do NOT get recycled


Everything you need to know for your brand

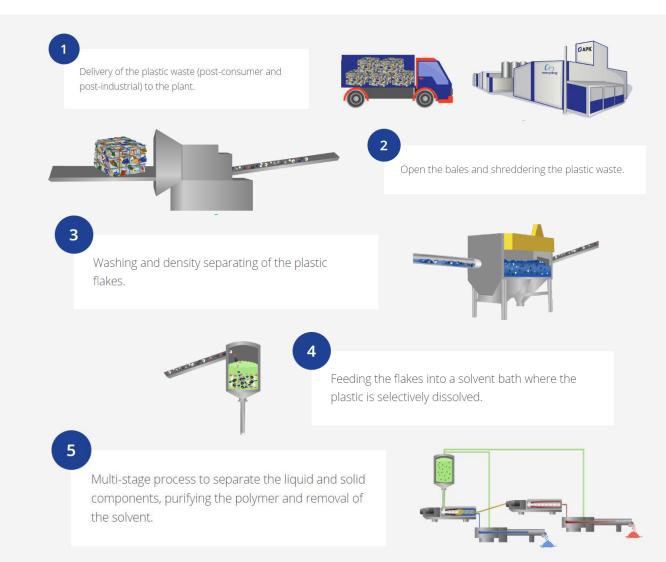
Chemical Recycling

Chemical Recycling

Pyrolisis

- Cracking + condensation , temperature (typically 400°C) is used to break the polymers down to hydrocarbons (back to oil)
- Mainly used for polyolefins (PE/PP)
- The oil must be post-treated or mixed with other oil products
- Process cost?
- Considered recycling?

QUANTAFUEL



Chemical Recycling

Purification

- Mostly used with PVC and PS. Multi-layer packaging containing PE/PP also targeted
- Use of a reagent to remove additives or contaminants
- The polymer structure is not affected

Chemical Recycling

Depolymerisation

- Mostly used with PET, PA and PU.
- Breaking of molecular bonds using a chemical, enzymatic, and/or thermal agent.
- The processes using a chemical solvent (like glycol or methanol) to break the polymers are called solvolysis
- In the case of PET, DMT (Dimethyl Terephthalate), TPA (Terephthalic acid) or BHET (Bis-HydroxyEthyl-Terephtalate) can be obtained as an intermediate product to synthesize PET

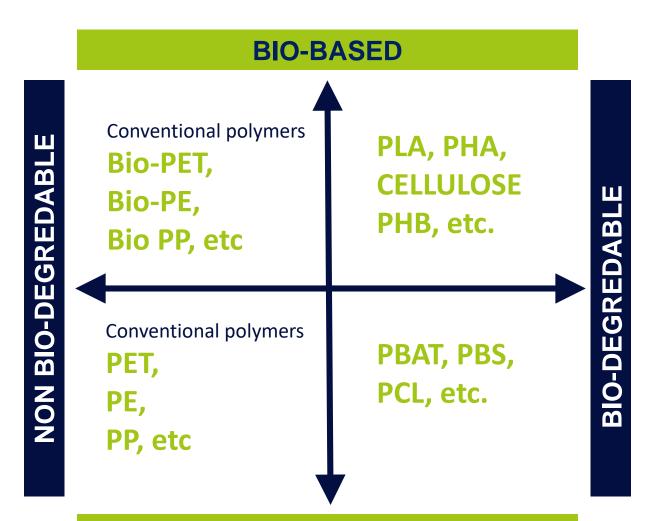
Chemical Recycling

Carbon footprint

- Incineration of plastics has a climate impact of 1,5 ton CO2-eq per ton input.
- Mechanical recycling for PET has a climate impact of -2,3 ton CO2-eq per ton input.
- Chemical recycling van residual plastics and DKR 350 has an climate impact of 0 to -0,5 ton CO2-eq per ton input (pyrolyse, low-temp- gassification and integrated hydropyrolysis);
- Chemical recycling of PET by the Ioniqa technology (depolymerisation) has a climate impact of -1,5 ton CO2-eq per ton input.
- Solvolyse of EPS has a impact of -1,5 ton CO2-eq per ton input.

Source: CE-Delft, Verkenning chemische recycling, april 2019

Everything you need to know for your brand


Can Bio-Based Plastics

be recycled?

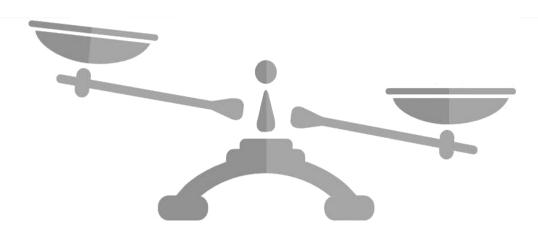
Bio-based plastics

PETROLEUM BASED

Everything you need to know for your brand

Recycling, LCA's, CO₂ &

corporate reduction pledges



Recycling, LCA's. CO₂, etc.

A balancing act....

- Reducing plastics vs Recyclability
- Recyclability vs Carbon footprint
- Carbon footprint vs LCA
- Prevention of littering?
- Consumers perception, expectations and demand
- Recyclability vs Recycled content

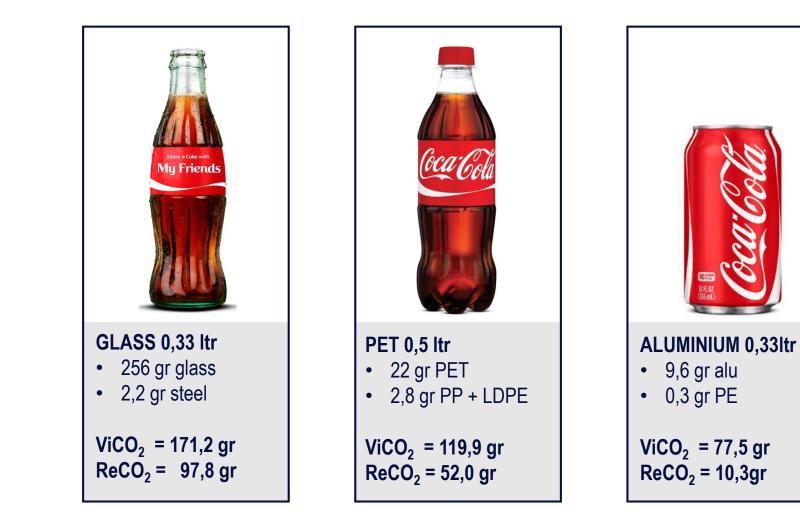
Recycling, LCA's, CO₂, etc.

Recycling, LCA's. CO₂, etc.

Carbon footprint

Life Cycle Analysis (LCA)

KG's of CO₂ emitted per ton of materia


	INCINERATION	RECYCLING	ADVANTAGE
Paper	2.059	1.080	979
Glass	658	375	283
HD PE	3.925	1.153	2.772
LD PE	3.467	1.373	2.094
РР	5.131	2.237	2.894
(E)PS	5.632	949	4.683
PET	4.801	2.084	2.717
Steel	1.243	829	414
Aluminum	7.827	1.045	6.782

Source: CE Delft

Recycling, LCA's. CO₂, etc.

Lowest CO₂?

Everything you need to know for your brand

Everything you need to know for your brand

MASTERCLASS RECYCLING

Thank you for your attention!

See you next time!